

Overview

Ying Lin
Jet Propulsion Laboratory
August 18, 2018

Why is Venus so different than Earth?

- Address Planetary Decadal Survey Goals, specifically Objective IA: 'How did the atmosphere of Venus form and evolve'
- Measure the concentrations of noble gases and isotope ratios in Venus atmosphere @110 km (below the homopause) to provide key information on the formation and evolution of Venus.

- Noble Gases are tracers of planetary evolution
 - the supply of volatiles from the solar nebula
 - the supply of volatiles by asteroids and comets
 - the escape rate of planetary atmospheres
 - the degassing of the interior (volcanism)
 - the timing of these events

Noble gases are tracers of planetary evolution

 $@\ 2018\ California\ Institute\ of\ Technology.\ U.S.\ Government\ sponsorship\ acknowledged.$

(Pepin et al., 1991; Chassefiere et al., 2012)

Baseline Mission

- Flight time ~430 days
- Launch in 2022, December
- Launch C3 < 9 km²/s²
- Arrival Vinf. = ~2.7 km/s
- Initial large elliptical orbit ≈20

days

- Spin Stabilized for cruise and atmospheric pass
- Separate solid for VOI
- DV Monoprop capability ~60 m/s (in probe)
- DV VOI Capability ~433 m/s

VOI

Atmospheric pass Target altitude: 110 km

Atmospheric Entry Conditions

Entry velocity of 10 km/s Target altitude of 110 km

Homopause is between 119 km (evening terminator) and 135 km (night side close to the morning terminator) with a weak dependence on latitude (Limaye et al., 2017)

Mechanical Configuration

JPL Mini Quadra-pole Ion Trap Mass Spec (QITMS)

- No discrete wires to make electrical connections to mass spectrometer parts.
- 4 kg mass; 2U volume
- Extremely robust against shock/vibe loads
- Very stable measurements

- Each generation of QITMS is getting progressively smaller with lower mass and without compromising performance
 - 8kg → 4kg
- Builds on previous developments for HEOMD; e-Nose and VCAM.

QITMS Isotopic Precision is 3-5 times better than required

Summary

- This concept offers a new and game changing approach for atmospheric sampling at Venus
- Understanding how Earth and Venus have diverged in their geological history is a key to understanding the habitability of earth-like planets.
- A miniaturized QITMS measuring the concentrations of noble gases and isotope ratios in Venus atmosphere would provide key information on the formation and evolution of Venus.
- A free-flying SmallSat probe may be able to deliver high-priority science at Venus for a fraction of the cost of a conventional Discovery mission.

jpl.nasa.gov